Horizon 2020 - Clean Sky 2, fondi UE per ricerca aeronautica

Clean Sky - Photo by Ivan Crivellaro on Foter.com / CC BYAggiornato il 16 aprile 2018. Pubblicato l'ottavo bando Clean Sky 2 per la ricerca nel settore dell'aeronautica. A disposizione 70,6 milioni di euro.

Connecting Europe Facility - bando Ue per gestione traffico aereo

L'iniziativa Clean Sky 2 ha pubblicato l'ottavo bando per la ricerca nel settore dell'aeronautica, attraverso il quale saranno individuati partner - PMI incluse - che intendono partecipare al programma. Le risorse stanziate ammontano a 70,6 milioni di euro.

Clean Sky 2, programma UE per aeronautica

Clean Sky 2 è il principale programma di ricerca europeo nel settore dell’aeronautica per il periodo 2014-2020 e porterà avanti gli obiettivi del programma precedente, Clean Sky Joint Technology Initiative (JTI), con particolare attenzione alla riduzione delle emissioni di CO2, NOx e rumori dal 20% al 30%.

Al pari di Clean Sky JTI, Clean Sky 2 è un partenariato pubblico-privato (PPP) che coinvolge la Commissione europea, organizzazioni, imprese, centri di ricerca e università di tutta Europa.

Lo strumento è finanziato con 1,75 miliardi di euro dall’UE nell’ambito del programma europeo per la ricerca e l'innovazione Horizon 2020 e con 2,2 miliardi di euro dai soggetti che aderiscono all'iniziativa, per un investimento totale di circa 4 miliardi di euro.

Ricerca - bene partecipazione industria ai PPP europei, ma poche PMI

Ottavo bando Clean Sky 2

L'ottavo bando Clean Sky 2 verte su vari argomenti (topic):

  • JTI-CS2-2018-CfP08-AIR-01-37: Composite mould tool based on 3D printing
  • JTI-CS2-2018-CfP08-AIR-01-38: Innovative test rig for the investigation of gust loads in transonic flow conditions
  • JTI-CS2-2018-CfP08-AIR-01-39: In-Seat Ventilation & Supply for Personalized Comfort Control on Board an Aircraft
  • JTI-CS2-2018-CfP08-AIR-02-60: Full Scale Innovative Integrated Tooling for Composite Material Wing Box [SAT]
  • JTI-CS2-2018-CfP08-AIR-02-61: Development and Optimization of Bonding Assembly Technology for a Composite Material Wingbox
  • JTI-CS2-2018-CfP08-AIR-02-62: Virtual-Hybrid-Real On Ground demonstration for HVDC & EMA Integration
  • JTI-CS2-2018-CfP08-AIR-02-63: Enhanced Low Cost Complex Composite Structures
  • JTI-CS2-2018-CfP08-AIR-02-64: Cold Spray of metallic coatings on polymer and composite materials [SAT]
  • JTI-CS2-2018-CfP08-AIR-02-65: Design of special welding head for FSW process with automatic adjustable pin and welding force control system [SAT]
  • JTI-CS2-2018-CfP08-AIR-02-66: Evaluation and modelling of comfort driving parameters in a Cabin Demonstrator
  • JTI-CS2-2018-CfP08-AIR-02-67: Model based development of an innovative ECS air distribution system for ground testing with a Cabin Demonstrator
  • JTI-CS2-2018-CfP08-AIR-03-01: Bio contamination survey
  • JTI-CS2-2018-CfP08-AIR-03-02: Non destructive testing (NDT) of bonded assemblies
  • JTI-CS2-2018-CfP08-AIR-03-03: Sizing for recycled carbon fibres to optimise adhesion in organic/inorganic composite materials
  • JTI-CS2-2018-CfP08-AIR-03-04: Development of an anaerobic digester prototype for aircraft use
  • JTI-CS2-2018-CfP08-AIR-03-05: Development and evaluation of a manufacturing process for a lightweight aircraft wheel made of CFRP
  • JTI-CS2-2018-CfP08-ENG-01-32: Optimized UHPE flow path cooling design and testing using advanced manufacturing techniques
  • JTI-CS2-2018-CfP08-ENG-01-33: Prediction of High Frequency Vibrations in Aircraft Engines
  • JTI-CS2-2018-CfP08-ENG-01-34: Airflow characterization through rotating labyrinth seal
  • JTI-CS2-2018-CfP08-ENG-01-35: Oil flow 4 channels regulation valves
  • JTI-CS2-2018-CfP08-ENG-01-36: Optimizing impingement cooling
  • JTI-CS2-2018-CfP08-ENG-01-37: Aerodynamic upgrade of Surface Air Cooled Oil Cooler (SACOC)
  • JTI-CS2-2018-CfP08-ENG-01-38: Low NOx / Low soot injection system design for spinning combustion technology
  • JTI-CS2-2018-CfP08-ENG-02-09: Development and verification of microstructure, residual stress and deformation simulation capability for additive free-form deposition using multiple superalloys
  • JTI-CS2-2018-CfP08-ENG-03-23: Probabilistic simulation of defect probability in LWD – Wire fusion processes
  • JTI-CS2-2018-CfP08-ENG-03-24: VHCF material model for case hardened gear steels for application in an epicyclic power gearbox
  • JTI-CS2-2018-CfP08-ENG-03-25: Development of design methodologies for thermal management and scavenge / sealing interactions in future ventless UltraFan bearing chambers
  • JTI-CS2-2018-CfP08-FRC-01-18: Adoption of a “Digital Transformation” approach to improve NGCTR design and simulation
  • JTI-CS2-2018-CfP08-FRC-01-19: Certification by Simulation for Rotorcraft Flight Aspects (CSRFA)
  • JTI-CS2-2018-CfP08-FRC-01-20: Design, development and flight qualification of a supercritical composite shaft drive line for tiltrotor main drive system
  • JTI-CS2-2018-CfP08-FRC-01-21: Development of integrated engine air intake and protection systems for Tilt Rotor
  • JTI-CS2-2018-CfP08-FRC-01-22: Engine exhaust wake flow regulator for Tilt Rotor
  • JTI-CS2-2018-CfP08-FRC-01-23: Experimental characterization and optimization of the RH and LH Engine intakes configuration of the next generation Tilt Rotor
  • JTI-CS2-2018-CfP08-FRC-01-24: High efficiency full electrical low pressure Compartment Pressure Control System for tilt-rotor applications
  • JTI-CS2-2018-CfP08-LPA-01-47: High Performance Electrical Components for Bleed Control
  • JTI-CS2-2018-CfP08-LPA-01-48: Advanced Pitch Control Mechanism TRL4 Demonstration
  • JTI-CS2-2018-CfP08-LPA-01-49: Oil Transfer Bearing for Advanced Pitch Change Mechanism
  • JTI-CS2-2018-CfP08-LPA-01-50: Development and manufacturing of innovative tooling for composite parts
  • JTI-CS2-2018-CfP08-LPA-01-51: Design and manufacturing of a large-scale HLFC wing model for a transonic WTT
  • JTI-CS2-2018-CfP08-LPA-01-52: Thermo-mechanical design validation of compact heat exchanger by thermal cycling life prediction
  • JTI-CS2-2018-CfP08-LPA-01-53: Compact Matrix Air Oil Heat Exchanger
  • JTI-CS2-2018-CfP08-LPA-01-54: Development of Measurement Techniques for Visualisation and Evaluation of Reverse Flow Interactions with Fan
  • JTI-CS2-2018-CfP08-LPA-01-55: Development of AC cabling technologies for >1kV aerospace applications
  • JTI-CS2-2018-CfP08-LPA-01-56: Aerospace standard Lightweight SSPC for High voltage >1kA application
  • JTI-CS2-2018-CfP08-LPA-01-57: Innovative Power and data transfer solutions for nacelle
  • JTI-CS2-2018-CfP08-LPA-02-23: "Development and execution of new test procedures for thermoplastic aircraft fuselage panels "
  • JTI-CS2-2018-CfP08-LPA-02-24: Generic added structures on shells made from thermoplastic sheet material
  • JTI-CS2-2018-CfP08-LPA-02-25: Micro mechanical characteristics of a PEKK Co-consolidation / welded joint for use in thermoplastic fuselages
  • JTI-CS2-2018-CfP08-LPA-02-26: Multifunctional Aircraft Power Network with Electrical Switching
  • JTI-CS2-2018-CfP08-LPA-03-15: Pilot monitoring in service data collection
  • JTI-CS2-2018-CfP08-REG-01-16: Innovative recirculation/air treatment system
  • JTI-CS2-2018-CfP08-REG-01-17: Full scale innovative pressure bulkheads for Regional Aircraft Fuselage barrel on-ground demonstrators
  • JTI-CS2-2018-CfP08-REG-02-05: High fidelity power effects aerodynamics at High Reynolds conditions in Regional turboprop configuration
  • JTI-CS2-2018-CfP08-REG-03-01: Laminar Flow robustness and Load control effectiveness evaluation for a Regional Turboprop wing
  • JTI-CS2-2018-CfP08-SYS-02-46: Modeling of friction effects caused by surface contact with high pressure and rapid movement
  • JTI-CS2-2018-CfP08-SYS-02-47: New grip generation for active inceptor
  • JTI-CS2-2018-CfP08-SYS-02-48: Design and development of a long stroke Piezo Electric Actuator
  • JTI-CS2-2018-CfP08-SYS-02-49: Health Monitoring for Electro-Hydraulic Actuator fluid
  • JTI-CS2-2018-CfP08-SYS-02-50: Innovative RTM tooling for CFRP primary structural parts
  • JTI-CS2-2018-CfP08-SYS-02-51: Innovative quality inspection methods for CFRP primary structural parts
  • JTI-CS2-2018-CfP08-SYS-02-52: Innovative Composite Material Qualification Methodologies
  • JTI-CS2-2018-CfP08-SYS-02-53: Development of an optimized DC-DC converter for a smart electrical system
  • JTI-CS2-2018-CfP08-SYS-02-54: Development of a HVDC current limiter
  • JTI-CS2-2018-CfP08-SYS-02-55: Air treatment system for airborne microbe removal from air circulation or chambers
  • JTI-CS2-2018-CfP08-SYS-03-17: Improved Thermal Properties of Computing Platforms for Next-Generation Avionics [SAT]
  • JTI-CS2-2018-CfP08-SYS-03-18: Development and testing of innovative Cr free anodic layers removal solution
  • JTI-CS2-2018-CFP08-THT-01: Innovative NOx Reduction Technologies
  • JTI-CS2-2018-CFP08-THT-02: Cognitive Computing potential for cockpit operations

Le domande potranno essere presentate dal 3 maggio 2018 al 12 luglio 2018, ore 17.00 (ora locale di Bruxelles).

> Horizon 2020 - Clean Sky 2, finanziamenti per ricerca aeronautica

Photo by Ivan Crivellaro on Foter.com / CC BY